
Software Development and Test Methodology for a Distributed Ground

System

Presented by:

George Ritter
Marshall Space Flight Center

Lockheed Martin Space Operations
256-544-8269

george.ritter_msfc.nasa.gov

Technical Contributor:

Pat Guiilebeau

Abstract

The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground

system has evolved over a period of about 10 years. During this time the software

processes have migrated from more traditional to more contemporary development

processes in an effort to minimize unnecessary overhead while maximizing process

benefits. The Software processes that have evolved still emphasize requirements

capture, software configuration management, design documenting, and making sure the

products that have been developed are accountable to initial requirements.

This paper will give an overview of how the Software Processes have evolved,

highlighting the positives as well as the negatives. In addition, we will mention the

COTS tools that have been integrated into the processes and how the COTS have

provided value to the project.

ii

EHS Software Design Methodology
Table of Contents

The Enhanced HOSC System (EHS) ... 1

EHS Software Development .. 1

Level A Development .. 1

Figure 1: Software Development Process ... 2

Level B Development 2

Table 1: Sample Trace ... 3

Software Design .. 3

Figure 2: Sample Architecture Diagram .. 4

Software Coding and Unit Test ... 4

Integration Testing and Code Iterations .. 5

The Development Test Environment ... 5

The Development Integration Test Phase .. 5
Table 2: DIT Test Statistics ... 6

The HOSC Integration Test Phase ... 6
Software CM and the CM Build Process ... 7

Figure 3: Software Change Control Process .. 7

Figure 4: CM Source File Control ... 8

Spiral Development Approach .. 8

Software Design Process Modifications with PC Development 9
Lessons Learned .. 9

Conclusions ... 10

Appendix A: Metrics; CM Builds, Lines of Code, COTs Products 11

CM Builds, Platform Types, and COTS Products ... 11

Types of Code and Lines of Code that make up EHS: .. 11

COTs used in the Software Development Process .. 11

Appendix B: Terminology ... 12

o°.

111

The Enhanced HOSC System (EHS)

Marshall Spaceflight Center's Payload Operations Integration Center (POIC) is home to

EHS. EHS is a command and control telemetry processing ground system made up of

computers, networks, and software that has been developed and put into operations in

support of the International Space Station payload operations. EHS began over 10 years

ago as an upgrade replacement system for the "POC 2'" VAX-VMS that support Space-

Lab payload operations on-board the Space Shuttle. EHS is also on-line as the ground

control system for the Chandra X-Ray observatory in Cambridge, Mass.

EHS Software Development

EHS Sottware Development has historically followed the waterfall approach in which

high level requirements known as Level A's are first developed in response to project

needs. These level A requirements are decomposed into smaller subsystem requirements

known as Level B's. The Level B's are used by software developers to design and code

the software system. In this fashion, the system design "falls like water" from high level

(very low detailed) requirements, to very low level (high level of detail) code. A

complete software development process includes the testing phases in which the software

must operate successfully before the system can be certified as flight ready. Software

creation and software change is controlled through our software Configuration

Management (CM) processes. One of the most important parts of our software CM is the

way we "tag" software files that are being delivered, based on the change that drives the

delivery. We tag software with HOSC Problem Reports (HPRs) and with Engineering

Change Requests (ECRs).

Later in our systems maturity we have experimented in some areas with a modification to

our waterfall model with a methodology called Spiral Development. Spiral Development

has proven useful for areas where we are migrating existing requirements to new

technologies.

Whatever form of the development process we use, our system requirements and design

must be documented. The EHS design processes has been captured in a Process

Definition Documents (PDD). There have been times we have diverged from the PDD,

but overall it is our standard for doing business and deviations from the process require
an individual waiver.

Level A Development

The Software Development process is shown in Figure 1. The process begins with

Engineering Change Requests (ECRs) that drive the creation and updates of Level A

requirement. The EHS has generic Level A's and project specific Level A requirements

since EHS is used for multiple flight projects including Chandra X-Ray Observatory and

the International Space Station (ISS). The Level A requirements are typically created by

the Systems Engineering portion of our project organization, and are grouped into

functional subsystems. The subsystems include Telemetry Acquisition, Telemetry

Processing, Commanding, System Level Services, Web Services, Database, or Payload

Information Management. The Level A's are reviewed in depth at this point by software

developmentto determinethe feasibility,level of effort, andproposedschedulefor their
implementation.In the earlystagesof this project, LevelA's werereviewedat a typical
SoftwareRequirementsReview(SRR)meeting. Now thatour systemis in a muchmore
maturestate, these requirements,along with the assessmentof the developers,are
reviewed at an internal board meeting called the HMCG. The HMCG includes
representativesof all POIC stakeholders.POIC stakeholdersare FD41 (POIC NASA
sponsor),CADRE (POIC Operations),and the contractor's(UMS) OperationsTeam,
SystemEngineering,anddevelopmentgroups,plusrepresentativesfrom remotesitesthat
will beusingEHSfor their sciencemissionaboardISS. The purpose of the HMCG is to

determine if the Project should proceed with the implementation of the requirements.

IgC
r-,-

EHS Software Development and Test

....... /

m m i

I "SCEI

..... l I

lXPR_) I Upda_0PRs} $

Figure 1: Software Development Process

Level B Development

Once the Level A's have been approved by the HMCG and base-lined, the requirements

are functionally decomposed into smaller pieces known as Computer Software

Configuration Items (CSCIs). Simply put, CSCIs are a group of requirements for which

software can be created by approximately 3 or 4 individuals. Level B requirements are

then developed for each CSCI and placed into one or more Software Requirements

Specifications (SRSs). The level of detail for SRSs is inconsistent at best but typically

must be at a level that allows you to start thinking of implementation. Each SRS

Requirement is placed into a trace document along with the associated Level A

requirement for which the Level B can be traced. A sample from our trace is shown in

Table 1. Each Level B must be traced to insure we are not inappropriately making up

2

newrequirements,andto insurethereareno un-implementedlevel A requirements.This
processis subjectiveandagainrequiresthereviewandconsentof all stateholders.

_7vlPar

3.2.2.I.a

3.2.2.1._

3.2.2.1.ab

SRS 027 Vl Requirement

The Interface Display Operation User process
shall adhere to MSFC-STD--1956.

The Interface Display Operation User process
shall provide the capability to enable

limit/expected state sensing for all objects on a

display.

The Interface Display Operation User process
shall provide _ capability to zoom or un-zoom a

i time or XY plot on a display.

B Bid Lev A Doc [Lev A] Level A Requirement

I Par I
2131414.1 MSFC- RQMT- 14.2.1. The Dispby Oparation UI shall adhere to

el .@ 1440 A MSFC-STD- 1956.

2131414.1 I MSFC- RQMT- 14,2.1. The Display Operation UI shall provide the

e2.0 1440 L capability to toggle limit sensing on and
off.

2131414.1 MSFC- RQMT-

e2.O 1440
14.2.1. The Display Operation UI shall provide the

IC capability to view data as updated.

Table 1: Sample Trace

The Level B requirements are officially reviewed at a Preliminary Design Review (PDR).

In recent years the SRR and PDR have been combined into one review (we call it PDR)

so that level A's, level B's, and traces are reviewed at once. Depending on the extent of

the changes, the PDR may involve formal presentations, or it may just involve a "paper"

review. Review Item Discrepancies (RIDs) can be assessed against the Level B

requirements to document any issues the stakeholders might have.

Some CSCIs specify the use of COTs products. All EHS COTS are captured in the COTS

Specification which is typically created at the same time as software SRSs A list of the

COTS products used in the EHS Design is included in Appendix A.

Software Design

Once the Level B requirements are approved, the software development group begins the

software design phase. In reality the software design phase begins during requirements

specification. Prototypes are done early on for critical and high-risk areas. A more

formal look at prototype development will be discussed in the Spiral Development

section of this paper. In the classic approach, software developers take the Level B

Requirements and covert them to software design. Our design is documented in Software

Design Docum;ents (SDDs). SDDs contain functional data flows, descriptions of the

interfaces to other CSCIs, software architecture drawings, and screen dumps for designs

that have a user interface. As EHS has matured, the software architecture drawing is the

primary piece of the SDD that has continued to be developed. All other details are

captured in code. Figure 2 is an example of a software architecture drawing for part of
EHS that is developed on the xxx/Unix systems.

Architecture Diagram

_t r, mJ '

l.,_u,, 'ql---" 7

I--5 -

Figure 2: Sample Architecture Diagram

SDDs are reviewed at a CDR when RIDs can again be written against the design. UMS

uses a Design Approval Board to determine that design is ready for coding. RIDs must

be resolved and documents submitted for official updates. A Design Approval Checklist

is used to insure all the bases are covered. Again, coding has probably already begun,

but some of the issues raised by the CDR RIDS may remain unresolved until they are

closed via the Design Review Board. This may last well into the coding phase.

Another event that takes place at design time is the creation of Software Configuration

Elements (SCEs). SCEs define a particular executable or library unit. SCEs are groups

of files for which an individual make-file exists in the sot_ware build. [Please refer to

Appendix B for a definition of terms used.] SCE names are used for tracking changes in

software configuration management process.

Software Coding and Unit Test

The actual creation of software is the magical part of the process. The best we can do is

give soRware developers well understood requirements, a few important coding rules, the

proper development tools, and best test environment to work through this phase. In EHS

we developed a naming standard, and coding standard that is verified by running a

SoRware Standards Verification tool (C source only). We were also required to be as

"POSIX compliant as possible" in case some time in the future we needed to migrate to

another POSIX compliant operating system.

One of the most important tools is the software configuration management tool. The CM

tool maintains the software repository. The CM tool allows us to keep track of software

4

baselinesand managesoftwarechangeby keeping track of the reasoneach software
sourcefile haschanged.TheCM toolalsoallowsdevelopersto maintaindifferent levels
of sharingduring the developmentphase. In this manner,interfacecodecanbeshared
evenwhile the next versionof an interfaceis in work. We useClear-casefor our CM
tool. Clear-casemaintainsa databaseof the softwaresourcefiles in what is calleda
VersionObjectBase(vob). DevelopersuseClear-case"views" to createdandbuild their
portion of the project. The "branch" structure of ClearCaseallows developersto
integratewith each other more smoothly when they are ready to move beyondunit
testing.

The goal of all unit testing is 100% code statement coverage. When developers have

successfully completed unit testing and basic integration testing, the source files are

promoted, in Clear-case, to the CM build level. For a more detailed description of how

CM manages software changes, refer to the section titled "Software CM and the CM
Build Process"

Integration Testing and Code Iterations

Early testing begins at the code unit level during the code phase of development. There is

some integration testing done at the unit level to avoid writing too many stubs or drivers.

However, our official integration testing is broken into three phases outside of unit

testing. These phases are the Development Test Environment (DTE) phase, the

Development Integration Test (DIT) phase, and the HOSC Integration Test (HIT) phase.

Each successive phase invokes stricter software change control then the previous phase.

Iterating, or changing the code during integration test phases is crucial to progressing to

more in depth levels of testing. The Level of test-team independence also increases from

one test phase to the next with the HIT phase being the most independent.

The Development Test Environment

The CM build is first delivered to the Development Test Environment (DTE). The DTE

hardware is separate from development hardware and should be as much like flight

hardware and networks as is possible. This environment is intended to provide developers

a place to verify that the CM version of their application "make" comes out working the

same as the version they have been working with in their environment. The DTE is also

where the next level of integration testing occurs. Applications developers drive this

testing phase since the code to this point is very new and more prone to interface errors.

Changes are iterated through the CM process whenever a developer chooses, as long as

the code change is consistent with the approved content of the build. Code changes at

this level are managed in Clear-case with the same "tag" as the original delivery. This

process is shown in Figure 1 with the flow titled "Updates (original HPRs/ECRs). "" A

changed source file has it's newer version re-tagged and merged again to the CM branch

for inclusion in the CM build. In the DTE phase of testing CM typically builds and loads

the software on a daily basis.

The Development Integration Test Phase

The Development Integration Test Phase is primarily intended to insure that the new

capabilities delivered in the current build, successfully integrate into the entire system.

In this phasewemovetheCM build outof thedeveloper'sareaandinto anareausedby
non-developer-testers.Thesetestpersonnelwork independentof thedevelopersto verify
that the softwaredelivered meetsthe intent of the HPR fix or ECR. Testershave
developedfunctionalproceduresfor corecapabilities that encompass groups of Level A

requirements. In the DIT phase a subset of the test procedures are run to ensure that the

overall system is intact, and any new requirements are met. Sometimes Level B

requirements are used to determine what and how to test a more complex capability. For

the DIT phase, developers provide preliminary release notes documenting software

changes and how testing was done by developers. At the end of the DIT phase testers
produce metrics that look like Table 2.

Functional

Tests

Time Tagged

Commanding
Command

Groups
Command via

Scripting

Update
command

Remote

Commanding
Total

Level

A's

12

15

Success

12

15

30 30

12 11

25 25

121 120

Fail

0

0

0

1

0

1

HPRs

Deliver

ed

HPRs

Passed

IPRs Gen'd

0

1 1 0

0 0 0

2

1 1 1

8 8 4

Table 2: DIT Test Statistics

You can see in Figure 1 that code iterations are performed in the DIT phase by
identifying problems with Intemal Problem Reports (IPRs). IPRs are stored in a File-

maker Pro data base_and developers can use the IPR as a Clear-case merge tag. IPRs are

not reviewed by any stakeholders other than developers and testers. Code iterations in

the DIT phase happen a couple times per week.

Once the DIT Testers are satisfied that the intent of the HPRs and ECRs is met, and that

any IPRs have been corrected, we hold a Build Ready Review (BR) to officially

"promote" the software to the next level of testing. At BR, CM creates a Compact Disk

from their final software build. Developers turn in final copies of release notes and HPR

resolutions. The CD and this paperwork make up the BR package and a copy gets stored
in the project CM vault.

The HOSC Integration Test Phase

The HOSC Integration Test Phase exists primarily to verify the contents of the CD by

running more system level tests on the build delivery. The CD must be good since this is
our product used to load for flight. The same test procedures that were used in the DIT

phase are also used in the HIT phase, but the there is more concentration on all aspects of

6

the functional testsand not just on fixes and updates. In addition, load testing is
performedduring the HIT phases. Problemsfoundduring HITT aredocumentedwith
HPRsandfixes for theseHPRsarecanonly be includedn a newreleaseof the system.
At the end of the HIT phasea compositeset of metrics from DIT and HIT testing is
createdby the testteamthat communicatestestingstatisticssimilar to Table2, but with
morecategoriessuchasnumberof HPRsandtypesof HPRs(regression,new-capability)
generatedin eachphaseof test. Thecompletionof thesemetricsprovidesa methodfor
continuousimprovementby allowing analysisto be doneat each phaseso that test
procedurescanbe improvedbasedonproblemreportswrittenafterthecompletedphase.

Software CM and the CM Build Process

The software CM group only accepts software for approved ECRs and HPRs for

scheduled releases. Notice in Figure 3 how each group creates ECRs, HPRs and IPRs

that flow into CM. CM takes approved change and creates a Code Baseline Checklist

(CBC) for each ECR, HPR, and IPR. The developer uses that CBC to submit a merge
request for the files that need to be modified or created. Software CM uses the files listed

on the CBC to merge to the CM branch and create the CM Build.

Software

Change Control Process

Figure 3: Software Change Control Process

Figure 4 shows more detail in the area of managing software source files. Software

developers make changes to source files and then they apply a label that has been created

by CM. This label is the CBC number which consists of the combination of the build

number and the ECR, HPR, or IPR number (label example: HPRD2345-6.1) The CBC

keeps track of the source files that have been merged for that label and it also has

information such as the software developer's name, the Software Configuration Element

(SCE), and the list of files merged. Software developers use the CBC form to submit

mergerequeststo CM. CM takes the filenames listed on the merge request, and runs a

Clearcase script that finds the filenames with the labels on the developer branch, and

merges the files to the CM branch. The label that was on the version of the file on the

developer branch is also transferred to the new version created on the CM branch. Once

CM has merged source files from the developer branches to the CM controlled branch,

they initiate the software build. In this fashion, our software CM processes are automated
and well understood by all contributors.

Software

Change Control

(Labels)

HPI_

Software
IPRs Development

ECRs

CM "branch"

Figure 4: CM Source File Control

Spiral Development Approach

A few years ago UMS began the process of determining how to migrate our systems

away from the more expensive SGI systems that have a defined end-of-life, onto

commodity-based PC systems. While migrating the technologies, the base system

requirements have not changed much. For this reason we needed to pick a development
approach that matches the problem space.

Spiral development methodology defines a cyclic approach for growing a systems degree
of definition and implementation. The Spiral Development Process must defined a set of

anchor points or milestones for ensuring stakeholder commitment to feasible and
mutually satisfactory system solutions.

Our current system's end-of-life and high COTS maintenance costs forced us to develop
a HOSC migration strategy where we were fairly confident we wanted to move the user

desktopapplicationsto a Windows 2000 environment. This allows EHS to be run from a

commodity based platform and to have EHS applications more easily integrate with the

thousands of PC applications on the market. Another direction to move in is away from

xxx/Unix on our server platform functions to a PC-Linux environment. Again the

motivation is hardware costs and long term interoperability with future COTS products.

Referencing Figure 1, we chose existing requirements in the trace that needed to be

migrated to one of the new platforms (Win 2K or Linux), designed, coded, delivered,

tested, operated, re-evaluated, chose more requirements and iterated again. We updated
the trace in Figure 1 to add the Build in which the requirement is satisfied on the Win 2K
platform (e2.0 = EPC version 2.0)

Another area where an iterative or Spiral development approach is best suited is in the

Payload Information Management (PIMS) are. PIMS features needed to be experienced
by the users for them to determine the detail requirements. Successive PIMS deliveries

resulted in user's needs being extremely close to the PIMS capabilities.

Software Design Process Modifications with PC Development

While working on the HOSC migration process, we decided to try to minimize the

impacts that were incurred when creating SDDs. Although the majority of the
information in our existing SDDs is useful, there did sometimes tend to be too much

emphasis on interface details before code was actually happening. This emphasis is

inappropriate given the level of detail at SDD creation time. So we chose to represent the

PC design with the architecture drawing. The architecture drawings are very useful for

showing interfaces without having the code level details. Architecture drawings are also

good at showing processes, libraries, and over-all design structure. Documenting the

high level interfaces allows for a system wide review of the overall design.

SDDs also include a section with User Interface screen dumps that we decided could be

seen when running the prototype application rather than seeing the screens on paper. So

with the changes proposed to the SDD content, we decided to not create SDDs but to

include the architecture drawings as part of the software CM system, and to call these

drawings the Software Development Folder. When the software has to change due to

HPRs and ECRs, architecture drawings are updated, then tagged and merged just like
source code files.

Lessons Learned

The first lesson is don't over analyze requirements. Early on in EHS development, we

spent a little too much time making perfect SRSs, presentations etc, when we should

probably have been prototyping more pieces of the system. Our attention to detail at the

requirements level and SDD level was very high and that costs time and also made those

documents higher maintenance. When the coding began, designs changed and that
invalidated a lot of documents so the documents had to be redone, and this wasted time.

The second lesson is an iterative development process with heavy user involvement is

best. When we started small, and let users experience the capabilities, we found that we

developedsoftwarethat more closelymet user's needs. When you spend less time

analyzing requirements and design documents (lesson one) you are free to prototype and
work with the users.

The third lesson is don't focus incessantly on rapping up document details. Sometimes

we spend days and weeks trying to close the loop on old RIDs and document updates that

have an extremely low value overall. The time spent on things like this could be better

spent focusing on overall product reliability and workability.

The fourth lesson is you need a test environment that MATCHES your flight

environment. Time should be spent in the software design phase trying to design flight-
like environments. The effort will save lots of software rework.

The fifth lesson is remain open to process improvements particularly moving from one

phase of development to another. An example is our method for getting code merged.

For the initial build, all new code was approved for delivery. Initially Code Baseline

Checklist (CBC) requests were handwritten paper submittals used for merge requests.

This evolved into a Filemaker Pro database where developers could enter information

about files that need to be modified or created, print a hardcopy and submit the hardcopy

to software configuration management. This evolved into our current process of having
developers enter merge information into the CBC Filemaker Pro database and submit the

merge request from within the database. The current merge request process is easier for
those involved and less error prone.

Conclusions

The job of developing systems is a job of change. Our development processes exist so

that we can effectively manage this change. If the processes are too stringent, overall

productivity is slow, and we will never deliver a system in a timely fashion. If the

processes are too flexible, then the change is out of control and the system quality is
affected, and productivity again decreases.

In EHS development we have evolved our processes to be a combination of traditional

and new. We handle our requirements in a more traditional fashion. This facilitates good
test procedures and combined with the proper test environments, allows us to ensure

accuracy and quality in our systems development. We have more recently migrated the

design processes to a more iterative, user focused process that relies less on the document

controls and more on "proof on concept" methods. In summary, we have been able to

"change" the way we change, so as to develop cost effective, high quality systems.

10

Appendix A: Metrics; CM Builds, Lines of Code, COTs Products

This section is provided to give some perspective as to the size of EHS, and the number

of different platforms and technologies that are managed.

CM Builds, Platform Types, and COTS Products

Patform/OS: Build

xxx/Unix: EHS,

CERT, WEED, EDG

xxx/Unix: PIMS

xxx/Unix Web

Platform Type
EHS Servers:

Telemetry, Command,

Data Base, SMAC,

Login, ERIS
PIMS Server

Web Server

xxx/Unix PDSS PDSS Servers

PC/Win 2k: EPC,
MPS

User Client

Workstation

COTs

xxx platform "C Stuff', Failsafe,

Framemaker, Networker, Java

runtime/plug-in/JDK, Oracle, SQL,

Teleuse, Netscape

Vfind, Draper Labs Timeliner

Compiler, Java Mail, Java XML

Netscape communicator/directory

server/Iplanet, Java runtime/plug-

in/JDK, Networker, Perl, Visibroker

Acrobat, Internet Explorer, Netscape

Nav., Norton, MS Office, Oracle Client,

X-Thinpro

Types of Code and Lines of Code that make up EHS:

Type of Code LOC Count

.pcd (Teleuse GUI Definitions)
Java

.c 1.8 M

.d (Teleuse GUI code) 250K

350K i

.CC

.pc

.sql
4GL

.h

260K

18K

216K

152K

1.3M

184K

34K

4.564M

Scripts
Total

COTs used in the Software Development Process

Product

FileMaker Pro

ClearCase Source Code CM

Visio, MS Powerpoint

MS Word, Software Through Pictures

Purpose
HPR, IPR, CBC Data Bases

Software Architecture Drawings
SRS, SDDs,

11

Appendix B: Terminology

make: the process of compiling and linking software source files

make-file: the file that defines the criteria for a particular make

build: the process of running the make and creating binary images in the form of

executables and libraries that are combined into a release package that is loadable.

load: the process of taking a successful Build and installing it to run on a computer
merge: the process of moving a source file from one are of control called a "branch" to

another area or branch. When a source file is merged, a new version of the file is created

in the CM tool on the branch where the file is merged to.

branch: and area of control. Developers have branches, groups of developers have
branches, and the Software CM group has branches.

version: an instantiation of a source file

12

EHS Software Development Methodology

George Ritter

Marshall Space Flight Center

Lockheed Martin Space Operations
256-544-8269

george.ritter@msfc.nasa.gov

£OCKNE£D MART'iN Date: July 8, 2002
George Ritter: UMS

Page: 1

Table of Contents

Introduction

System Size and COTS

Historical software Development in EHS
- Level A's

- Level B's

- Software Design

- Software Code and Unit Test

- Integration Testing

Software Configuration Management (CM)
Process

A Spiral Development Approach

Lessons Learned

+

and the CM Build

Date: July 8, 2002
George Ritter: UMS

Page: 2

Space

Shuttle

Video

Downlink

to All

Payload
Users/

Facilities

and

POIC

To
POIC/PDSS/USOC Overall Relationship

Other Space Station Program Facilities/Systems
+

,t /Flig_

S-Band U/L & D/L

TDRS

White Sands Complex

K-Band D/L

U/ks

STS OD, SSTF SIM

JSC

SSCC/MCC-H,

SSTF/PTC

IP Element P/L CMD, File U/Ls

I P/L Telemetry/Ancillary Data, a

U/L Responses, File D/Ls (USOS Supported P/L's)

...... .['/.t..¢_p.FOe U./L_ (U._Q_ Sqp.vor.teApIk _L . j

| i "................... °"°"*° ..

!

i
I

ESA GRC

NASDA AMES

RSA JSC

ASI MSFC

D/L

International

Space Station

Telemetry/Command

Database Definitions

Sim/Test U/L Responses,

Sim/Test P/L CMD/File

U/Ls

JSC MBF,

JSC IMARS,

MSFC PDL

¢ Data, U/L Responses, File D/Ls

i -Ir" - _ P/L CMD, File U/I.,s

Planning�Operations Files, Ops Erecution

Worlf/low/Configuration Mgmt InterJaces, ! "
i Operations Documentation, WEB Services, Voice # [
I

US.

Investigator
Sites

US. Us_
Teleselence

Support
TReK/EPC Users

At Various

Remote User

Sites

Date: July 8, 2002

George Ritter: UMS

Page: 3

+

Introduction

The Marshall Space Flight Center's Payload Operations
Integration Center (POIC) contains a command and control

ground system called, EHS, meaning Enhanced HOSC System
- 'E' - Enhanced

- 'H' - HOSC

• HOSC - Huntsville Operation Support Center
- 'S' - System

• EHS is the system (software, hardware, networks) that supports
the ISS CADRE team in their payload support functions

• EHS is also used as the command and control ground system

located m Cambridge Mass. for the Chandra X-Ray Observatory

• EHS's software development and test processes have evolved

and have improved dramatically to achieve better system
reliability and tighter adherence to delivery schedule.

Date: July 8, 2002
M A R T I N George Ritter: UMS

" ' Page: 4

System Size

Types of Code and Lines of Code in EHS

.

.C

Type of Code

.d (Teleuse GUI code)

_Teleuse GUI Definitions)__
Java

.CC

.sql
4GL

Sc_s

Total

LOC Count
1.8M

250K

350K

260K

18K

216K

152K

1.3M

184K

34K

4.6M

Date: July 8, 2002
George Ritter: UMS

Page: 5

EHS COTS

CM Builds, Platform Types, COTS Products
______._ Platform
EHS Servers: Telemetry,

Command, Data Base, SMAC,
_ER_S
PIMS Server

Web Server

PDSS Servers

User Client Workstation

Patform/OS: Build

xxx/Unix: EHS,

CERT, WEED, EDG

_ix: PIMS

yyy/Unix Web

yyy/Unix PDSS

PC/Win 2k: EPC,
MPS

Development Process COTS

--------_ COTs

SGI "C Stuff', Failsafe, Framemaker, Networker,

Java runtime/plug-in/JDK, Oracle, SQL, Teleuse,

Netscape communicator/dir server/Iplanet, Java

_K, Networker, Perl, Visibroker

Vfind, Draper Labs Timeliner Compiler, Java Mail,
Java_____L

Acrobat, Internet Explorer, Netscape Nay., Norton,

MS Office, Oracle Client, X-Thinpro

Product

FileMaker Pro
Clearcase

_oint
MS Word

....... Pu ose]

HPR, IPR, CBC Data Bases _s_

Source Code CM

Software Architecture Drawin s
S_RS, SOOs_,

+

Date: July 8, 2002
George Ritter: UMS

Page: 6

I
Eq

HPRs

SCE1

Software

Repository

,. k

EHS Software Develonment and T._, , __

i-,
: "_, SRR/HMCG

I
I
I

R
I
I
I
I

I
I

CDR

I
I

Trace

g

o
f_

SCE2

I
I

software

Software

CM

inal HPR

Problems Problems

Date: July 8, 2002
George Ritter: UMS

Page: 7

Level A Development

• EHS Software Development has typically followed the

"Waterfall" methodology

- ECRs -> Level A's .-> Level B's -> Design -> Code

+

- Level A's for each project

• Chandra X-Ray Observatory

• International Space Station

- Level A's are broken into subsystems or areas

- ECRs submit Level A updates.

- Software Development (and Hardware Engineers) review the

proposed changes to determine feasibility, level of effort, and a

proposed schedule of implementation

- HMCG Approves or disapproves changes

- HMCG consists of the following stake-holders: NASA FD41,

_z CADRE, Contractor System Enl_ineerint_, Software Dev-Test
/_ Date: July 8, 2002

111 ir i _ George Ritter UMS

Level B Development

Level A's are further decomposed into more detail Level B's.

Level B's are grouped into CSCIs, size of about a 4 person task.

Level B's are placed into Software Requirement Specs (SRS)

Each Level B are then "traced" to Each Level A.

Sample Trace:
027vl Par

3.2.2.1.a

3.2.2.1._

!3.2.2.1.ab

SRS 027 V1 Requirement

The Interface Display

Operation User process shall
iadhere to MSFC-STD- 1956.

The Interface Display

Operation User process shall

provide the capability to

enable limit/expected state

sensing for all objects on a

display.

The Interface Display

Operation User process shall

provide the capability to zoom

or un-zoom a time or XY plot

on a display.

B Bid

213141
4.1

el.0

213141

4.1 l e2.0

Lev A Doc

MSFC-

RQMT-
1440

MSFC-

RQMT-
1440

MSFC-

RQMT-

1440

Lev A Par

14.2.1.A

14.2.1.L

14.2.1.C

Level A Requirement

The Display Operation UI shall
adhere to MSFC-STD- 1956.

The Display Operation UI shall

provide the capability to toggle limit

sensing on and off.

The Display Operation UI shall

provide the capability to view data

as updated.

Date: July 8, 2002

George Ritter: UMS

Page: 9

Level B Development
+

Level B's are reviewed at a Preliminary Design Review (PDR)

In recent years we have combined the SRR and PDR and call it
PDR.

Review Item Discrepancies (RIDs) can be assessed against Level

A's and B's and must be resolved in order to proceed with

delivery of the product.

Date: July 8, 2002

M A R • lr N George Ritter: UMS
.... , Page: 10

Software Design
+

• /Vli_

Theoretically software design begins after Level A approval. In

reality, coding beganwith the first thought of the requirement.

- This practice has evolved over the years to allow for early

prototyping

In software Design we create Software Design Documents

(SDDs)

SDDs contain functional data flows, interface descriptions, and

software architecture drawings.

Over time we have determined the architecture drawing to be the

most important part of the SDD. All other details are best found
in the code it self.

Date: July 8, 2002

P,_ A R T I N George Ritter: UMS
. Page.'. 11

Exceptioll
Monitor

Sample Architecture Drawing

Report Requests

Report Data

Pre-released /

BaseUned I

Archived

Telemetry

Messages / Exception Advisories

Printer

.

/
/

Start /
/

Group

Status

/
/

/
/

/ Reconfi

/ Common

Config

TNS

Start

Time

Terminate

Enable / Disable / Refresh/Configure

Terminate

1

APT

Time / Telemetry

Notification Requests

Update Notifications

MARTIN

Date: July 8, 2002

George Riner: UMS

Page: 12

Software Design
+

• / Flig_

Software design approval is required to begin coding, although

in recent years we usually begin coding early and tie up design
approval loose ends during coding.

- We have a design approval checklist

- At design approval time all Level A RIDs, Level B RIDS, and

design RIDs must be in order as well as all doc updates completed

Software design also occurs for S/W changes related to HOSC
Problem Reports (HPRs).

We also create Software Configuration Elements (SCEs) at
design time.

SCEs are the software deliverables which is typically an
executable or a library or an object.

SCEs are are group of source code files

MARTfN
Date: July 8, 2002

George Ritter: UMS

Page: 13

Software Coding

Coding is where the magic happens ©

Developers need well understood requirements, proper tools, and
a proper test environment to make it happen

We only make code changes for approved ECRs and HPRs

One of the most important tools is the CM tool for managing
source code. Our CM tool allows us to

- manage code baselines and change to the baselines

- Share source at various levels during development

We use Clearcase

Clearcase allows us our CM group to have source files on their

"branch" and developers get their approved changes merged to
the CM branch when a delivery is due.

- A little more explanation for this process later on.

LOCI(NEED MARTIN
Date: July 8, 2002
George Ritter: UMS

Page: 14

Software Testing

The first phase of test happens during the code phase and is

called Unit Testing.

Developers test "units" of code in their environment and they

strive for 100% statement coverage.

Integration Testing is broken in two three phases

- Development Test Environment (DTE) testing

- Development Integration Test (DIT) testing

- HOSC integration Test (HIT) testing

Each phase invokes sticker software change mechanisms (see

figure)

Each phase moves to a unique and more highly controlled
hardware environment

LOCKNE£D

Date: July 8, 2002
George Ritter: UMS

Page: 15

DTE Testing

DTE testing is performed on a string of hardware that is in the

developers area, but that is configured just like a flight system.

DTE testing is also performed with a build of software that came

from the CM group's build.

Developers drive DTE testing but they now are using more of

each other's code and they are using the CM version of

everything.

This testing is fairly general and very non-independent

Code is iterated, or re-merged by using the original "tags" that

drove the change: ECR, or HPR.

Code iterations are frequent, CM builds and re-loads are

typically nightly

Date: July 8, 2002

M ,4 R "r I N '/ George Ritter: UMS
. Page: 16

DIT Testing

The Development Integration Test (DIT) Phase is to insure that

the new capabilities delivered in the current build, successfully

integrate into the entire system.

The CM build is moved out of the developer area hardware and

into an area controlled by test personnel for testing independence

Testers have developed functional test procedures that

encompass groups of Level A requirements.

Test procedures are run with the primary focus being the

verification of the fixes and new capabilities (HPRs, ECRs)

DIT Testers write Internal Problem Reports (IPRs) for problems

they find related to the HPRs and ECRs that were delivered.

Code is iterated by development about twice a week during the

DIT phase based on IPR fixes.
Date: July 8, 2002

L 0 C M/f E _ O MAR T if N "j GeorgeRitter:UMS
..-- ,' Page: 17

DIT Test Statistics
+

[Fli_

At the End of the DIT phase, metrics are reviewed

Functional

Tests

Commands and

Data Sets

Time Tagged

Commanding
Command

Groups
Command via

Scripting

Update
command

Remote

Commanding
Total

Level Success

A's

27 27

12 12

15 15

30 30

12 11

25 25

121 120

Fail

0

0

0

0

1

0

1

HPRs HPRs IPRs Gen'd

Deliver Passed

ed

3 3 2

1 1 0

1 1 0

0 0 0

2 2 1

1 1 1

8 8 4

DIT Testing culminates with a Build Ready (BR) Review at

which time all paper work (release notes, HPRs) is turned in and

a CD is burned with the CM build of the software package

LOCRNEED MARTIN

Date: July 8, 2002

George Ritter: UMS
Page: 18

HIT Testing
+

HIT Testing exists primarily

- to verify that the CD that was bumed with the deliverable software
is good

- and to run some more "system level" tests that go beyond just fixes

- To run load testing

The same test procedures are used for HIT that are used for DIT,
except with a wider focus.

At the end of the HIT phase a composite set of metrics is

produced that is similar to the table on the previous slide that

includes information such as number and types of HPRs
generated during each phase.

- This info can be fed back for test procedure updates and
continuous process inprovements

MARTIN
Date: July 8, 2002

George Ritter: UMS

Page: 19

Software

Change Control Process

HIT/DIT

and

Ops
And Dev.

HPR Board

ove

write _[HPR
•.- Data Base

FM Pro)

DIT Tester

_ write

IPR

Data Base

(FM Pro)

HMCG

approve

ECR

Data Base

CM

Software

Build

creates

r Devel(

Code Base 1

Checklist

DB

(FM Pro)

LOCI(NEED MARTIN
.

creates_

Merge

Request

Date: July 8, 2002
George Ritter: UMS

Page: 20

+
• /F,,_

Software CM and Build

Software CM is the key to making accurate and timely updates
to the system baselines

HPRs are written by just about anybody, and they are approved
by the HPR Board. The HPR Board consists of representatives
from all Stake Holders

IPRs are written by DIT Testers

ECRs are written by Systems Engineering and approved by the
HMCG, which is also made up of Stake Holders.

The CM Organization creates Code Baseline Checklists that use
to generate "merge" requests

- These requests are submitted when source code is ready for the
CM build

Software CM then "makes" the EHS build

Filemaker Pro is and important COTs product in this process

Date: July 8, 2002
George Ritter: UMS

Page: 21

Software

Change Control

(Labels)

HPRs

IPRs

jp_

Software
Iv

Development

ECRs

Software

CM (Ciearease)

LOCKHEED MARTIN

Updates (IPRs)

trieRs /

Date: July 8, 2002
George Ritter: UMS

Page: 22

Software CM and Build

The source files that make up an SCE are "tagged" by the

developer with a label consisting of the ECR, IPR, or HPR
number

Tags are available only for approved changes..

Code merge requests are also only take for approved changes

CM merges (creates a new version) the files to the CM branch

and then makes the binary images

MARTIN

Date: July 8, 2002

George Ritter: UMS
Page: 23

Spiral Development in EHS

Spiral Development Model

- "Risk driven model used to guide multi-stake-holder, concurrent

engineering of software intensive systems

• POIC stake-holders: CADRE, FD, Testing, Development, System
Engineering

- Main features of Spiral Development

• Cyclic approach for incrementally growing a system's degree of

definition and implementation

• A def'med set of"Anchor Point" milestones for ensuring stakeholder

commitment to feasible and mutually satisfactory system solutions

- Advantages of Spiral Development Model

• Avoids premature commitment to requirements, design, COTS,
cost/schedule

• Avoids "analysis paralysis"

.

MA R TIN

Date: July 8, 2002
George Ritter: UMS

Page: 24

Spiral Development Cycle (yellow)

I
I

Design Design Design) i_(SDD) (SDD) (SDD)
I
I

Trace

B1 SCE1

B2 SCE2
B3

DITT

Systems

SCE1

Software

Repository

(HPRs)

}SCE2

Development

Software Test

Build iIsofiware Environment
I (DTE)

Software I

' 1CM I
1

U_al HPRs)_

Problems
Problems

MA R TIN

Date: July 8, 2002

George Ritter: UMS

Page: 25

Spiral Development in EHS
.

• /vl;_-'l_)

For EHS the end-of-life of our hardware platforms has driven us

to make some major changes

On the Software Development and Test drawing we chose

specific Level A's we wanted to implement on new platforms,

and we began prototypes in those areas

As those areas succeeded, we chose more requirements and thus

gradually grew, or spiraled the migrated system requirements.

So we updated the trace and added the items shown in red "e 1.0"
etc...

Date: July 8, 2002

M A _ T I N George Ritter: UMS
_. Page: 26

Spiral Development Updated Trace
+

027vl Par!

3.2.2.1.a

3.2.2.1._

3.2.2.1._

SRS 027 V1 Requirement

The Interface Display

Operation User process shall
adhere to MSFC-STD- 1956.

The Interface Display

Operation User process shall

provide the capability to

enable limit/expected state

sensing for all objects on a

display.

The Interface Display

Operation User process shall

provide the capability to zoom

or un-zoom a time or XY plot

on a display.

B Bid

213141
4.1

el.0

213141
4.1 I e2.0

213141
4.1 e2.0

Lev A Doc

MSFC-

RQMT-
1440

MSFC-

RQMT-
1440

MSFC-

RQMT-
1440

Lev A Par

14.2.1.A

14.2.1.L

14.2.1.C

Level A Requirement

The Display Operation UI shall
adhere to MSFC-STD- 1956.

The Display Operation UI shall

provide the capability to toggle limit

msensing on and off.

The Display Operation UI shall

IProvide the capability to view data

]as updated.

Date: July 8, 2002
George Ritter: UMS

Page: 27

+

Lessons Learned

Avoid over-analyzing requirements

Do a more iterative development approach with user
involvement

Don't waste man-power on document details

Make sure your test environment looks like your operational

environment as much as possible

Remain open to continuous process improvements

- We automated the software change control process

- We streamlined the software Design documentation process

- We allowed for the "Spiral" approach in our PIMS and PC
Migration

LOCKNEED
Date: July8,2002
GeorgeRitter:UMS

Page: 28

Conclusion

Software development and test is a job of managing

Too much "process" and you never deliver

.

change

Too little "process" and you deliver low quality products and

that takes time to fix, and you never deliver

We have evolved EHS process to inlcude some old, and some
new ideas

- Traditional handling of requirements

- Newer concept of iterative development with user involvement and

proof of concept

- Automated keeping track of defects and correlating defects to fixes

via the software cm processes

- Feedback test metrics into the process for continuous improvement

We have been able to "changed" the way we manage change
Date: July 8, 2002

lr 0 C A' /i' E W 0 M A R' T jr N GeorgeRitter:UMS
,_ Page: 29

Software CM Terminology
+

make: the process of compiling and linking software source files

build: the process of running the make and creating binary
images in the form of executables and libraries that are
combined into a release package that is loadable.

load: the process of taking a successful Build and
run on a computer

installing it to

merge: the process of moving a source file from one are of
control called a "branch" to another area or branch. When a

source file is merged, a new version.of the file is created in the
CM tool on the branch where the file is merged to.

branch: and area of control. Developers have branches, groups
of developers have branches, and the Software CM group has
branches.

version: an instantiation of a source file

Date: July 8, 2002

M A ill T jr N George Ritter: UMS
Page: 30

